Difference between revisions of "Functions composed of Physical Expressions"

From S.H.O.
Jump to: navigation, search
Line 11: Line 11:
  
 
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
 
<math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
 +
 +
==See also==
 +
 +
* [[The Anatomy of a Physical Expression]]
  
 
{{Site map}}
 
{{Site map}}

Revision as of 00:26, 24 April 2016

Functions for a point charge q

The electric scalar potential φ at (r,t) due to a point charge q at (r,t) is:

φ(r,r)=q4π ϵ0constant×1|rr|proximity

The magnetic vector potential A at (r,t) due to a point charge q which had a velocity v at (r,t) is:

A(r,r)=φ(r,r)×1c2constant×drdtdislocation

A(r,r)=μ0 q4πconstant×1|rr|proximity×drdtdislocation

See also

Site map

HQGlossaryApril 2016 Presentation