Difference between revisions of "Functions composed of Physical Expressions"

From S.H.O.
Jump to: navigation, search
(Functions for an ordered pair of point charges (q,q'))
(Functions for an ordered pair of point charges (q,q'))
Line 16: Line 16:
 
A charge <math>q</math> subject to an electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of:
 
A charge <math>q</math> subject to an electric scalar potential <math>\mathbf{\varphi}</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> at <math>\left(\mathbf{r'},t'\right)</math> has an electric potential energy of:
  
<math>q\mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
+
<math>q\varphi_{(q,q')}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{qq'}{4\pi\ \epsilon_0}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}}</math>
  
 
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{d\mathbf{r'}}{dt}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
 
A charge <math>q</math> subject to a magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\frac{d\mathbf{r'}}{dt}</math> at <math>\left(\mathbf{r'},t'\right)</math> has a potential momentum of:
  
<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{q\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
<math>q\mathbf{A}_{(q,q')}\left(\mathbf{r},\mathbf{r'}\right) = q\varphi_{(q,q')}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
  
<math>q\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
+
<math>q\mathbf{A}_{(q,q')}\left(\mathbf{r},\mathbf{r'}\right) =  \underset{constant}{\frac{\mu_0\ qq'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math>
  
 
==See also==
 
==See also==

Revision as of 23:06, 14 May 2016

Functions for a point charge q

The electric scalar potential φ at (r,t) due to a point charge q at (r,t) is:

φ(r,r)=q4π ϵ0constant×1|rr|proximity

The magnetic vector potential A at (r,t) due to a point charge q which had a velocity drdt at (r,t) is:

A(r,r)=φ(r,r)×1c2constant×drdtdislocation

A(r,r)=μ0 q4πconstant×1|rr|proximity×drdtdislocation

Functions for an ordered pair of point charges (q,q)

A charge q subject to an electric scalar potential φ at (r,t) due to a point charge q at (r,t) has an electric potential energy of:

qφ(q,q)(r,r)=qq4π ϵ0constant×1|rr|proximity

A charge q subject to a magnetic vector potential A at (r,t) due to a point charge q which had a velocity drdt at (r,t) has a potential momentum of:

qA(q,q)(r,r)=qφ(q,q)(r,r)×1c2constant×drdtdislocation

qA(q,q)(r,r)=μ0 qq4πconstant×1|rr|proximity×drdtdislocation

See also

Site map

HQGlossaryApril 2016 Presentation