Difference between revisions of "Electromagnetic Potentials"
Line 10: | Line 10: | ||
==Draft== | ==Draft== | ||
− | The field experienced by a charge q | + | The field experienced by a charge <math>q</math> viewed at rest in a static electromagnetic field is: |
− | <math> | + | <math>\mathbf{F}_{rest,static} = - \nabla \varphi</math> |
− | The field experienced by a charge q | + | The field experienced by a charge <math>q</math> viewed at rest in a dynamic electromagnetic field is: |
− | <math> | + | <math>\mathbf{F}_{rest,dynamic} = - \nabla \varphi - ∂\mathbf{A}/∂t</math> |
− | The field experienced by a moving charge q | + | The field experienced by a moving charge q</math> in a dynamic electromagnetic field is: |
− | <math> | + | <math>\mathbf{F}_{moving,dynamic} = - \nabla \varphi_q - ∂\mathbf{A}_q/∂t</math> |
Where: | Where: | ||
− | * <math>\ | + | * <math>\varphi_q = \varphi - \mathbf{v} \cdot A</math> is the scalar potential experienced by the moving charge. |
− | * <math> | + | * <math>∂ \mathbf{A}_q/∂t = ∂\mathbf{A}/∂t + (\mathbf{v} \cdot \nabla)\mathbf{A}</math> is the partial time derivative of the magnetic vector potential experienced by the moving charge. |
− | Substituting per the above, the field experienced by the moving charge q' is: | + | Substituting per the above, the field experienced by the moving charge <math>q'</math> is: |
− | <math>F = - \nabla (\varphi-\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> | + | <math>\mathbf{F} = - \nabla (\varphi-\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> |
− | <math>F = - \nabla \varphi + \nabla (\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> | + | <math>\mathbf{F} = - \nabla \varphi + \nabla (\mathbf{v} \cdot \mathbf{A}) - ∂\mathbf{A}/∂t - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> |
Using Feynman subscript notation: | Using Feynman subscript notation: | ||
Line 50: | Line 50: | ||
Where: | Where: | ||
− | <math>B = \nabla \times \mathbf{A}</math> is the magnetic field. | + | <math>\mathbf{B} = \nabla \times \mathbf{A}</math> is the magnetic field. |
<math>\mathbf{ω}_\mathbf{v} = \nabla \times \mathbf{v}</math> is the angular rate of deflection. | <math>\mathbf{ω}_\mathbf{v} = \nabla \times \mathbf{v}</math> is the angular rate of deflection. | ||
Line 56: | Line 56: | ||
Substituting per the above, the field experienced by the moving charge is: | Substituting per the above, the field experienced by the moving charge is: | ||
− | <math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{A} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v} - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> | + | <math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + (\mathbf{v} \cdot \nabla)\mathbf{A} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v} - (\mathbf{v} \cdot \nabla)\mathbf{A}</math> |
− | <math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math> | + | <math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math> |
This field includes the field from Lorentz plus two additional terms: | This field includes the field from Lorentz plus two additional terms: | ||
− | <math>F = | + | <math>\mathbf{F} = \mathbf{F}_{Lorentz} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math> |
<math>(\mathbf{A} \cdot \nabla)\mathbf{v}</math> is the dot product of the magnetic vector potential with the gradient of the velocity field. | <math>(\mathbf{A} \cdot \nabla)\mathbf{v}</math> is the dot product of the magnetic vector potential with the gradient of the velocity field. | ||
− | For a velocity field defined in the immediate neighborhood of a moving charge q' at point p, where the local <math>(\nabla_\mathbf{v} \mathbf{A})_p</math> is a tangent vector on \mathbf{A} (the Lie derivative of <math>\mathbf{v}</math> along <math>\mathbf{A}</math>), the above is equivalent to: | + | For a velocity field defined in the immediate neighborhood of a moving charge <math>q'</math> at point <math>p</math>, where the local <math>(\nabla_\mathbf{v} \mathbf{A})_p</math> is a tangent vector on <math>\mathbf{A}</math> (the Lie derivative of <math>\mathbf{v}</math> along <math>\mathbf{A}</math>), the above is equivalent to: |
− | <math>(\mathbf{A} \cdot \nabla)\mathbf{v} = |\mathbf{A}|(\nabla_\mathbf{v} \mathbf{A})_p = |\mathbf{ | + | <math>(\mathbf{A} \cdot \nabla)\mathbf{v} = |\mathbf{A}|(\nabla_\mathbf{v} \mathbf{A})_p = |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math> |
− | Where a is the convective acceleration of the charge, which equals: | + | Where <math>\mathbf{a}</math> is the convective acceleration of the charge, which equals: |
− | <math>a = (∂\mathbf{v}/∂x)|(∂\mathbf{x}/∂t)|</math> | + | <math>\mathbf{a} = (∂\mathbf{v}/∂x)|(∂\mathbf{x}/∂t)|</math> |
If the charge is taken as a point particle, the convective acceleration is the same as the acceleration. | If the charge is taken as a point particle, the convective acceleration is the same as the acceleration. | ||
− | <math>a = ∂²\mathbf{x}/∂t²</math> | + | <math>\mathbf{a} = ∂²\mathbf{x}/∂t²</math> |
<math>\mathbf{A} \times \mathbf{ω}_\mathbf{v}</math> is the cross product of the magnetic vector potential and the angular rate of deflection. | <math>\mathbf{A} \times \mathbf{ω}_\mathbf{v}</math> is the cross product of the magnetic vector potential and the angular rate of deflection. | ||
Line 84: | Line 84: | ||
When fields are static, the field experienced by a moving charge is: | When fields are static, the field experienced by a moving charge is: | ||
− | <math> | + | <math>\mathbf{F}_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times \mathbf{ω}_\mathbf{v} + (\mathbf{A} \cdot \nabla)\mathbf{v}</math> |
So for the case of static fields, the force on an accelerating charge is: | So for the case of static fields, the force on an accelerating charge is: | ||
− | <math> | + | <math>\mathbf{F}_{moving,static} = - \nabla \varphi + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math> |
While the power on an accelerating charge q subject to a static field is: | While the power on an accelerating charge q subject to a static field is: | ||
− | <math>P_{moving,static} = q | + | <math>P_{moving,static} = q \left[- \nabla \varphi \cdot \mathbf{v} + (\mathbf{v} \times B) \cdot \mathbf{v} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a}) \cdot \mathbf{v}/|\mathbf{v}|^2 + (\mathbf{a} \cdot \mathbf{v})|\mathbf{a}_\mathbf{v}|/|\mathbf{v}|\right]</math> |
− | <math>P_{moving,static} = q | + | <math>P_{moving,static} = q \left[- \nabla \varphi \cdot \mathbf{v} + \mathbf{A} \times (\hat{\mathbf{v}} \times \mathbf{a}) \cdot \hat{\mathbf{v}} + \mathbf{a} \cdot \mathbf{A}_\mathbf{v}\right]</math> |
The force on a moving charge in a changing magnetic field becomes: | The force on a moving charge in a changing magnetic field becomes: | ||
− | <math>F = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{ | + | <math>\mathbf{F} = - \nabla \varphi - ∂\mathbf{A}/∂t + \mathbf{v} \times \mathbf{B} + \mathbf{A} \times (\mathbf{v} \times \mathbf{a})/|\mathbf{v}|^2 + |\mathbf{A}_\mathbf{v}|\mathbf{a}/|\mathbf{v}|</math> |
{{Site map}} | {{Site map}} | ||
[[Category:Function Conjunction]] | [[Category:Function Conjunction]] |
Revision as of 01:46, 27 June 2016
The basic idea here is that the electromagnetic potentials
and and their derivatives can be used to derive all electromagnetism.Draft
The field experienced by a charge
viewed at rest in a static electromagnetic field is:
The field experienced by a charge
viewed at rest in a dynamic electromagnetic field is:
The field experienced by a moving charge q</math> in a dynamic electromagnetic field is:
Where:
- is the scalar potential experienced by the moving charge.
- is the partial time derivative of the magnetic vector potential experienced by the moving charge.
Substituting per the above, the field experienced by the moving charge
is:
Using Feynman subscript notation:
Substuting for the curl of the vector potential and the curl of the immediate velocity field for a moving charge, we have:
Where:
is the magnetic field.
is the angular rate of deflection.
Substituting per the above, the field experienced by the moving charge is:
This field includes the field from Lorentz plus two additional terms:
is the dot product of the magnetic vector potential with the gradient of the velocity field.
For a velocity field defined in the immediate neighborhood of a moving charge
at point , where the local is a tangent vector on (the Lie derivative of along ), the above is equivalent to:
Where
is the convective acceleration of the charge, which equals:
If the charge is taken as a point particle, the convective acceleration is the same as the acceleration.
is the cross product of the magnetic vector potential and the angular rate of deflection.
When fields are static, the field experienced by a moving charge is:
So for the case of static fields, the force on an accelerating charge is:
While the power on an accelerating charge q subject to a static field is:
The force on a moving charge in a changing magnetic field becomes:
Site map
HQ ● Glossary ● April 2016 Presentation
|