Difference between revisions of "The Anatomy of a Physical Expression"

From S.H.O.
Jump to: navigation, search
(Definition)
 
(24 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
{{#seo:
 +
|title=The Anatomy of a Physical Expression @ The Function Conjunction [Sho Drives Wiki]
 +
|titlemode=replace
 +
|keywords=electricity,magnetism,motor,generator
 +
|description=Our own way to chop down a physical equation into building blocks.
 +
}}
 
{{DISPLAYTITLE:Function Conjunction → The Anatomy of a Physical Expression}}
 
{{DISPLAYTITLE:Function Conjunction → The Anatomy of a Physical Expression}}
 
Factors serve as '''The Anatomy of a Physical Expression'''. They come in several types as listed below, each characterized as having a distinct role in defining a property of a physical system. The following list items are partially underlined to make memorization easy:
 
Factors serve as '''The Anatomy of a Physical Expression'''. They come in several types as listed below, each characterized as having a distinct role in defining a property of a physical system. The following list items are partially underlined to make memorization easy:
  
# <u>Co</u>nstan<u>ts</u>
+
# <u>Co</u>nsta<u>nts</u>
# <u>Co</u>efficien<u>ts</u>
+
# <u>Co</u>efficie<u>nts</u>
 
# Quant<u>ities</u>
 
# Quant<u>ities</u>
 
# Proxim<u>ities</u>
 
# Proxim<u>ities</u>
Line 15: Line 21:
 
|-
 
|-
 
! Constant (or 1)
 
! Constant (or 1)
!rowspan=2 valign=top|<math>\times</math>
+
| <math>\times</math>
 +
|-
 
! Coefficient (or 1)
 
! Coefficient (or 1)
!rowspan=2 valign=top|<math>\times</math>
+
| <math>\times</math>
 +
|-
 
! Quantity (or 1)
 
! Quantity (or 1)
!rowspan=2 valign=top|<math>\times</math>
+
| <math>\times</math>
 +
|-
 
! Proximity (or 1)
 
! Proximity (or 1)
!rowspan=2 valign=top|<math>\times</math>
+
| <math>\times</math>
 +
|-
 
! Dislocation (or 1)
 
! Dislocation (or 1)
!rowspan=2 valign=top|<math>\times</math>
+
| <math>\times</math>
 +
|-
 
! Direction (or 1)
 
! Direction (or 1)
 +
| <math>=</math>
 +
|-
 +
!colspan=2| A Physical Expression
 
|}
 
|}
 
</div>
 
</div>
  
 
===Constants===
 
===Constants===
* <math>\mu_0</math> = Magnetic Permeability of Free Space
 
* <math>\epsilon_0</math> = Electric Permittivity of Free Space
 
* <math>k_B</math> = Boltzmann's constant
 
* <math>\alpha</math> = Fine Structure constant
 
 
* <math>c</math> = Speed of Light
 
* <math>c</math> = Speed of Light
 
* <math>G</math> = Gravitational constant
 
* <math>G</math> = Gravitational constant
 +
* <math>k_B</math> = Boltzmann's constant
 +
* <math>\alpha</math> = Fine Structure constant
 +
* <math>\mu_0</math> = Magnetic Permeability of Free Space
 +
* <math>\epsilon_0</math> = Electric Permittivity of Free Space
  
 
===Coefficients===
 
===Coefficients===
Line 42: Line 56:
 
===Quantities===
 
===Quantities===
 
* <math>q</math> = point charge
 
* <math>q</math> = point charge
* <math>\lambda_q</math> = linear charge density (for continuous charge)
+
* <math>\lambda_q</math> = linear charge density {{nobr|(for continuous charge)}}
* <math>\sigma_q</math> = surface charge density (for continuous charge)
+
* <math>\sigma_q</math> = surface charge density {{nobr|(for continuous charge)}}
* <math>\rho_q</math> = volume charge density (for continuous charge)
+
* <math>\rho_q</math> = volume charge density {{nobr|(for continuous charge)}}
 
* <math>m</math> = mass
 
* <math>m</math> = mass
 
* <math>\rho</math> = volume mass density
 
* <math>\rho</math> = volume mass density
Line 53: Line 67:
  
 
===Dislocations===
 
===Dislocations===
* <math>\mathbf{\hat{x}}</math> = position
+
* <math>\mathbf{x}</math> = position
* <math>\mathbf{\hat{v}}</math> = velocity
+
* <math>\mathbf{v}</math> = velocity
* <math>\mathbf{\hat{a}}</math> = acceleration
+
* <math>\mathbf{a}</math> = acceleration
* <math>\mathbf{r}</math> = position of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
====Dislocations according to an inertial observer at time <math>t</math>====
* <math>\frac{d\mathbf{r}}{dt}</math> = velocity of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
* <math>\mathbf{r}</math> = position of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
* <math>\frac{d^2\mathbf{r}}{dt^2}</math> = acceleration of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
+
* <math>\frac{\mathbf{r}}{∂t}</math> = <math>\mathbf{\dot{r}}</math> = velocity of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
* <math>\mathbf{r'}</math> = position a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
+
* <math>\frac{^2\mathbf{r}}{∂t^2}</math> = <math>\mathbf{\ddot{r}}</math> = acceleration of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>
* <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
+
* <math>\mathbf{r'}</math> = position a charge <math>q'</math> had at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
* <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>  
+
* <math>\frac{\mathbf{r'}}{∂t}</math> = <math>\mathbf{\dot{r}'}</math> = velocity a charge <math>q'</math> had at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
 +
* <math>\frac{^2\mathbf{r'}}{∂t^2}</math> = <math>\mathbf{\ddot{r}'}</math> = acceleration a charge <math>q'</math> had at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math>
  
 
===Directions===
 
===Directions===
Line 67: Line 82:
 
* <math>\mathbf{\hat{v}}</math> = velocity unit vector
 
* <math>\mathbf{\hat{v}}</math> = velocity unit vector
 
* <math>\mathbf{\hat{a}}</math> = acceleration unit vector
 
* <math>\mathbf{\hat{a}}</math> = acceleration unit vector
* <math>\mathbf{\hat{r}}</math> = position unit vector of <math>q</math>
+
====Directions according to an inertial observer  at time <math>t</math>====
* <math>\mathbf{\hat{\dot{r}}}</math> = velocity unit vector of <math>q</math>
+
* <math>\mathbf{\hat{r}}</math> = position unit vector of <math>q</math> at time <math>t</math>
* <math>\mathbf{\hat{\ddot{r}}}</math> = acceleration unit vector of <math>q</math>
+
* <math>\mathbf{\hat{\dot{r}}}</math> = velocity unit vector of <math>q</math> at time <math>t</math>
* <math>\mathbf{\hat{r'}}</math> = position unit vector of <math>q'</math>
+
* <math>\mathbf{\hat{\ddot{r}}}</math> = acceleration unit vector of <math>q</math> at time <math>t</math>
* <math>\mathbf{\hat{\dot{r'}}}</math> = velocity unit vector of <math>q'</math>
+
* <math>\mathbf{\hat{r'}}</math> = position unit vector of <math>q'</math> at retarded time <math>t'</math>
* <math>\mathbf{\hat{\ddot{r'}}}</math> = acceleration unit vector of <math>q'</math>
+
* <math>\mathbf{\hat{\dot{r'}}}</math> = velocity unit vector of <math>q'</math> at retarded time <math>t'</math>
 +
* <math>\mathbf{\hat{\ddot{r'}}}</math> = acceleration unit vector of <math>q'</math> at retarded time <math>t'</math>
 +
 
 +
==See also==
 +
 
 +
* [[Magnetic Energy]]
 +
* [[Functions composed of Physical Expressions]]
 +
* [[Electromagnetic Potentials]]
  
 
{{Site map}}
 
{{Site map}}
 +
 +
[[Category:Function Conjunction]]

Latest revision as of 20:18, 4 July 2016

Factors serve as The Anatomy of a Physical Expression. They come in several types as listed below, each characterized as having a distinct role in defining a property of a physical system. The following list items are partially underlined to make memorization easy:

  1. Constants
  2. Coefficients
  3. Quantities
  4. Proximities
  5. Dislocations
  6. Directions


Definition

Constant (or 1) [math]\times[/math]
Coefficient (or 1) [math]\times[/math]
Quantity (or 1) [math]\times[/math]
Proximity (or 1) [math]\times[/math]
Dislocation (or 1) [math]\times[/math]
Direction (or 1) [math]=[/math]
A Physical Expression

Constants

  • [math]c[/math] = Speed of Light
  • [math]G[/math] = Gravitational constant
  • [math]k_B[/math] = Boltzmann's constant
  • [math]\alpha[/math] = Fine Structure constant
  • [math]\mu_0[/math] = Magnetic Permeability of Free Space
  • [math]\epsilon_0[/math] = Electric Permittivity of Free Space

Coefficients

  • [math]\mu_r[/math] = Relative Magnetic Permeability
  • [math]\epsilon_r[/math] = Relative Electric Permittivity

Quantities

  • [math]q[/math] = point charge
  • [math]\lambda_q[/math] = linear charge density (for continuous charge)
  • [math]\sigma_q[/math] = surface charge density (for continuous charge)
  • [math]\rho_q[/math] = volume charge density (for continuous charge)
  • [math]m[/math] = mass
  • [math]\rho[/math] = volume mass density

Proximities

  • [math]\frac{1}{|\mathbf{r}-\mathbf{r'}|}[/math] = inverse of the magnitude of the separation between positions [math]\mathbf{r}[/math] and [math]\mathbf{r'}[/math]
  • [math]\frac{1}{|\mathbf{r}-\mathbf{r'}|^2}[/math] = inverse square of the magnitude of the separation between positions [math]\mathbf{r}[/math] and [math]\mathbf{r'}[/math]

Dislocations

  • [math]\mathbf{x}[/math] = position
  • [math]\mathbf{v}[/math] = velocity
  • [math]\mathbf{a}[/math] = acceleration

Dislocations according to an inertial observer at time [math]t[/math]

  • [math]\mathbf{r}[/math] = position of a charge [math]q[/math] at time [math]t[/math], when it receives a light signal from [math]q'[/math] that was emitted earlier at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math]
  • [math]\frac{∂\mathbf{r}}{∂t}[/math] = [math]\mathbf{\dot{r}}[/math] = velocity of a charge [math]q[/math] at time [math]t[/math], when it receives a light signal from [math]q'[/math] that was emitted earlier at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math]
  • [math]\frac{∂^2\mathbf{r}}{∂t^2}[/math] = [math]\mathbf{\ddot{r}}[/math] = acceleration of a charge [math]q[/math] at time [math]t[/math], when it receives a light signal from [math]q'[/math] that was emitted earlier at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math]
  • [math]\mathbf{r'}[/math] = position a charge [math]q'[/math] had at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math], when it emitted a light signal which has now reached [math]q[/math] at position [math]\mathbf{r}[/math] and time [math]t[/math]
  • [math]\frac{∂\mathbf{r'}}{∂t}[/math] = [math]\mathbf{\dot{r}'}[/math] = velocity a charge [math]q'[/math] had at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math], when it emitted a light signal which has now reached [math]q[/math] at position [math]\mathbf{r}[/math] and time [math]t[/math]
  • [math]\frac{∂^2\mathbf{r'}}{∂t^2}[/math] = [math]\mathbf{\ddot{r}'}[/math] = acceleration a charge [math]q'[/math] had at the retarded time [math]t' = t - |\mathbf{r}-\mathbf{r'}|/c[/math], when it emitted a light signal which has now reached [math]q[/math] at position [math]\mathbf{r}[/math] and time [math]t[/math]

Directions

  • [math]\mathbf{\hat{x}}[/math] = position unit vector
  • [math]\mathbf{\hat{v}}[/math] = velocity unit vector
  • [math]\mathbf{\hat{a}}[/math] = acceleration unit vector

Directions according to an inertial observer at time [math]t[/math]

  • [math]\mathbf{\hat{r}}[/math] = position unit vector of [math]q[/math] at time [math]t[/math]
  • [math]\mathbf{\hat{\dot{r}}}[/math] = velocity unit vector of [math]q[/math] at time [math]t[/math]
  • [math]\mathbf{\hat{\ddot{r}}}[/math] = acceleration unit vector of [math]q[/math] at time [math]t[/math]
  • [math]\mathbf{\hat{r'}}[/math] = position unit vector of [math]q'[/math] at retarded time [math]t'[/math]
  • [math]\mathbf{\hat{\dot{r'}}}[/math] = velocity unit vector of [math]q'[/math] at retarded time [math]t'[/math]
  • [math]\mathbf{\hat{\ddot{r'}}}[/math] = acceleration unit vector of [math]q'[/math] at retarded time [math]t'[/math]

See also

Site map

HQGlossaryApril 2016 Presentation