Difference between revisions of "The Anatomy of a Physical Expression"
From S.H.O.
Line 14: | Line 14: | ||
# <u>Di</u>sloca<u>tions</u> | # <u>Di</u>sloca<u>tions</u> | ||
# <u>Di</u>rec<u>tions</u> | # <u>Di</u>rec<u>tions</u> | ||
− | |||
==Definition== | ==Definition== |
Revision as of 13:16, 22 May 2016
Factors serve as The Anatomy of a Physical Expression. They come in several types as listed below, each characterized as having a distinct role in defining a property of a physical system. The following list items are partially underlined to make memorization easy:
- Constants
- Coefficients
- Quantities
- Proximities
- Dislocations
- Directions
Contents
Definition
Constant (or 1) | |
---|---|
Coefficient (or 1) | |
Quantity (or 1) | |
Proximity (or 1) | |
Dislocation (or 1) | |
Direction (or 1) | |
A Physical Expression |
Constants
- = Speed of Light
- = Gravitational constant
- = Boltzmann's constant
- = Fine Structure constant
- = Magnetic Permeability of Free Space
- = Electric Permittivity of Free Space
Coefficients
- = Relative Magnetic Permeability
- = Relative Electric Permittivity
Quantities
- = point charge
- (for continuous charge) = linear charge density
- (for continuous charge) = surface charge density
- (for continuous charge) = volume charge density
- = mass
- = volume mass density
Proximities
- = inverse of the magnitude of the separation between positions and
- = inverse square of the magnitude of the separation between positions and
Dislocations
- = position
- = velocity
- = acceleration
Dislocations according to an inertial observer at time
- = position of a charge at time , when it receives a light signal from that was emitted earlier at the retarded time
- = = velocity of a charge at time , when it receives a light signal from that was emitted earlier at the retarded time
- = = acceleration of a charge at time , when it receives a light signal from that was emitted earlier at the retarded time
- = position a charge had at the retarded time , when it emitted a light signal which has now reached at position and time
- = = velocity a charge had at the retarded time , when it emitted a light signal which has now reached at position and time
- = = acceleration a charge had at the retarded time , when it emitted a light signal which has now reached at position and time
Directions
- = position unit vector
- = velocity unit vector
- = acceleration unit vector
Directions according to an inertial observer at time
- = position unit vector of at time
- = velocity unit vector of at time
- = acceleration unit vector of at time
- = position unit vector of at retarded time
- = velocity unit vector of at retarded time
- = acceleration unit vector of at retarded time
See also
Site map
HQ ● Glossary ● April 2016 Presentation
|