Difference between revisions of "Function Conjunction"
From S.H.O.
(→The Anatomy of a Physical Expression) |
|||
Line 17: | Line 17: | ||
|- | |- | ||
|valign=top align=center| '''Examples:'''<br><math>\mu_0, \epsilon_0</math><br><math>k_B, \alpha, c</math><br>or<br><math>1</math> | |valign=top align=center| '''Examples:'''<br><math>\mu_0, \epsilon_0</math><br><math>k_B, \alpha, c</math><br>or<br><math>1</math> | ||
− | |valign=top align=center| '''Examples:'''<br><math>\mu_r, \epsilon_r | + | |valign=top align=center| '''Examples:'''<br><math>\mu_r, \epsilon_r</math><br>or<br><math>1</math> |
|valign=top align=center| '''Examples:'''<br><math>q,\lambda_q,\sigma_q,\rho_q</math><br><math>m,\rho</math><br>or<br><math>1</math> | |valign=top align=center| '''Examples:'''<br><math>q,\lambda_q,\sigma_q,\rho_q</math><br><math>m,\rho</math><br>or<br><math>1</math> | ||
− | |valign=top align=center| '''Examples:'''<br><math>\frac{1}{|\mathbf{r}|}, \frac{1}{|\mathbf{r}|^2}</math><br>or<br><math>1</math> | + | |valign=top align=center| '''Examples:'''<br><math>\frac{1}{|\mathbf{r}-\mathbf{r'}|}, \frac{1}{|\mathbf{r}-\mathbf{r'}|^2}</math><br>or<br><math>1</math> |
|valign=top align=center| '''Examples:'''<br><math>\mathbf{r}, \frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}</math><br><math>\mathbf{r'}, \frac{d\mathbf{r'}}{dt}, \frac{d^2\mathbf{r'}}{dt^2}</math><br><math>\mathbf{x}, \mathbf{v}, \mathbf{a}, \beta</math><br>or<br><math>1</math> | |valign=top align=center| '''Examples:'''<br><math>\mathbf{r}, \frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}</math><br><math>\mathbf{r'}, \frac{d\mathbf{r'}}{dt}, \frac{d^2\mathbf{r'}}{dt^2}</math><br><math>\mathbf{x}, \mathbf{v}, \mathbf{a}, \beta</math><br>or<br><math>1</math> | ||
|valign=top align=center| '''Examples:'''<br><math>\mathbf{\hat{r}},\mathbf{\hat{\dot{r}}},\mathbf{\hat{\ddot{r}}}</math><br><math>\mathbf{\hat{r'}},\mathbf{\hat{\dot{r'}}},\mathbf{\hat{\ddot{r'}}}</math><br><math>\mathbf{\hat{x}}, \mathbf{\hat{v}}, \mathbf{\hat{a}}</math><br>or<br><math>1</math> | |valign=top align=center| '''Examples:'''<br><math>\mathbf{\hat{r}},\mathbf{\hat{\dot{r}}},\mathbf{\hat{\ddot{r}}}</math><br><math>\mathbf{\hat{r'}},\mathbf{\hat{\dot{r'}}},\mathbf{\hat{\ddot{r'}}}</math><br><math>\mathbf{\hat{x}}, \mathbf{\hat{v}}, \mathbf{\hat{a}}</math><br>or<br><math>1</math> | ||
Line 33: | Line 33: | ||
===Coefficients=== | ===Coefficients=== | ||
+ | * <math>\mu_r</math> = Relative Magnetic Permeability of Free Space | ||
+ | * <math>\epsilon_r</math> = Relative Electric Permittivity of Free Space | ||
===Quantities=== | ===Quantities=== | ||
Line 43: | Line 45: | ||
===Proximities=== | ===Proximities=== | ||
+ | * <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|}</math> = Inverse of the magnitude of the separation between positions <math>\mathbf{r}</math> and <math>\mathbf{r'}</math> | ||
+ | * <math>\frac{1}{|\mathbf{r}-\mathbf{r'}|^2}</math> = Inverse square of the magnitude of the separation between positions <math>\mathbf{r}</math> and <math>\mathbf{r'}</math> | ||
===Dislocations=== | ===Dislocations=== | ||
+ | * <math>\mathbf{\hat{x}}</math> = position | ||
+ | * <math>\mathbf{\hat{v}}</math> = velocity | ||
+ | * <math>\mathbf{\hat{a}}</math> = acceleration | ||
* <math>\mathbf{r}</math> = position of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math> | * <math>\mathbf{r}</math> = position of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math> | ||
* <math>\frac{d\mathbf{r}}{dt}</math> = velocity of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math> | * <math>\frac{d\mathbf{r}}{dt}</math> = velocity of a charge <math>q</math> at time <math>t</math>, when it receives a light signal from <math>q'</math> that was emitted earlier at time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math> | ||
Line 50: | Line 57: | ||
* <math>\mathbf{r'}</math> = position a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | * <math>\mathbf{r'}</math> = position a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | ||
* <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | * <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | ||
− | * <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | + | * <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> |
===Directions=== | ===Directions=== | ||
+ | * <math>\mathbf{\hat{x}}</math> = position unit vector | ||
+ | * <math>\mathbf{\hat{v}}</math> = velocity unit vector | ||
+ | * <math>\mathbf{\hat{a}}</math> = acceleration unit vector | ||
+ | * <math>\mathbf{\hat{r}}</math> = position unit vector of <math>q</math> | ||
+ | * <math>\mathbf{\hat{\dot{r}}}</math> = velocity unit vector of <math>q</math> | ||
+ | * <math>\mathbf{\hat{\ddot{r}}}</math> = acceleration unit vector of <math>q</math> | ||
+ | * <math>\mathbf{\hat{r'}}</math> = position unit vector of <math>q'</math> | ||
+ | * <math>\mathbf{\hat{\dot{r'}}}</math> = velocity unit vector of <math>q'</math> | ||
+ | * <math>\mathbf{\hat{\ddot{r'}}}</math> = acceleration unit vector of <math>q'</math> | ||
==Functions Composed of Physical Expressions== | ==Functions Composed of Physical Expressions== | ||
Line 64: | Line 80: | ||
The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\mathbf{v'}</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | The magnetic vector potential <math>A</math> at <math>\left(\mathbf{r},t\right)</math> due to a point charge <math>q'</math> which had a velocity <math>\mathbf{v'}</math> at <math>\left(\mathbf{r'},t'\right)</math> is: | ||
− | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'} | + | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \mathbf{\varphi}\left(\mathbf{r},\mathbf{r'}\right) \times \underset{constant}{\frac{1}{c^2}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math> |
− | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r' | + | <math>\mathbf{A}\left(\mathbf{r},\mathbf{r'}\right) = \underset{constant}{\frac{\mu_0\ q'}{4\pi}} \times \underset{proximity}{\frac{1}{|\mathbf{r}-\mathbf{r'}|}} \times \underset{dislocation}{\frac{d\mathbf{r'}}{dt}}</math> |
Revision as of 20:14, 23 April 2016
Contents
[hide]The Anatomy of a Physical Expression
Constant | Coefficient | Quantity | Proximity | Dislocation | Direction | |||||
---|---|---|---|---|---|---|---|---|---|---|
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Constants
- = Magnetic Permeability of Free Space
- = Electric Permittivity of Free Space
- = Boltzmann's constant
- = Fine Structure Constant
- = Speed of Light
Coefficients
- = Relative Magnetic Permeability of Free Space
- = Relative Electric Permittivity of Free Space
Quantities
- = point charge
- = linear charge density (for continuous charge)
- = surface charge density (for continuous charge)
- = volume charge density (for continuous charge)
- = mass
- = volume mass density
Proximities
- = Inverse of the magnitude of the separation between positions and
- = Inverse square of the magnitude of the separation between positions and
Dislocations
- = position
- = velocity
- = acceleration
- = position of a charge at time , when it receives a light signal from that was emitted earlier at time
- = velocity of a charge at time , when it receives a light signal from that was emitted earlier at time
- = acceleration of a charge at time , when it receives a light signal from that was emitted earlier at time
- = position a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
- = velocity a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
- = acceleration a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
Directions
- = position unit vector
- = velocity unit vector
- = acceleration unit vector
- = position unit vector of
- = velocity unit vector of
- = acceleration unit vector of
- = position unit vector of
- = velocity unit vector of
- = acceleration unit vector of
Functions Composed of Physical Expressions
Functions for a point charge
The electric scalar potential
at due to a point charge at is:
The magnetic vector potential
at due to a point charge which had a velocity at is: