Difference between revisions of "Function Conjunction"
From S.H.O.
(→The Anatomy of a Physical Expression) |
(→The Anatomy of a Physical Expression) |
||
Line 1: | Line 1: | ||
==The Anatomy of a Physical Expression== | ==The Anatomy of a Physical Expression== | ||
+ | <div style="overflow-x: auto"> | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 15: | Line 16: | ||
! Direction | ! Direction | ||
|- | |- | ||
− | |valign=top align=center| '''Examples:'''<br><math>\mu_0, \epsilon_0</math><br><math>k_B, \alpha, c</math> | + | |valign=top align=center| '''Examples:'''<br><math>\mu_0, \epsilon_0</math><br><math>k_B, \alpha, c</math><br>or<br><math>1</math> |
− | |valign=top align=center| '''Examples:'''<br><math>\mu_r, \epsilon_r</math><br><math>N</math> | + | |valign=top align=center| '''Examples:'''<br><math>\mu_r, \epsilon_r</math><br><math>N</math><br>or<br><math>1</math> |
− | |valign=top align=center| '''Examples:'''<br><math>q,\lambda_q,\sigma_q,\rho_q</math><br><math>m,\rho</math> | + | |valign=top align=center| '''Examples:'''<br><math>q,\lambda_q,\sigma_q,\rho_q</math><br><math>m,\rho</math><br>or<br><math>1</math> |
− | |valign=top align=center| '''Examples:'''<br><math>\frac{1}{|\mathbf{r}|}, \frac{1}{|\mathbf{r}|^2}</math> | + | |valign=top align=center| '''Examples:'''<br><math>\frac{1}{|\mathbf{r}|}, \frac{1}{|\mathbf{r}|^2}</math><br>or<br><math>1</math> |
− | |valign=top align=center| '''Examples:'''<br><math>\mathbf{r}, \frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}</math><br><math>\mathbf{r'}, \frac{d\mathbf{r'}}{dt}, \frac{d^2\mathbf{r'}}{dt^2}</math><br><math>\mathbf{x}, \mathbf{v}, \mathbf{a}, \beta</math> | + | |valign=top align=center| '''Examples:'''<br><math>\mathbf{r}, \frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}</math><br><math>\mathbf{r'}, \frac{d\mathbf{r'}}{dt}, \frac{d^2\mathbf{r'}}{dt^2}</math><br><math>\mathbf{x}, \mathbf{v}, \mathbf{a}, \beta</math><br>or<br><math>1</math> |
− | |valign=top align=center| '''Examples:'''<br><math>\mathbf{\hat{r}},\mathbf{\hat{\dot{r}}},\mathbf{\hat{\ddot{r}}}</math><br><math>\mathbf{\hat{r'}},\mathbf{\hat{\dot{r'}}},\mathbf{\hat{\ddot{r'}}}</math><br><math>\mathbf{\hat{x}}, \mathbf{\hat{v}}, \mathbf{\hat{a}}</math> | + | |valign=top align=center| '''Examples:'''<br><math>\mathbf{\hat{r}},\mathbf{\hat{\dot{r}}},\mathbf{\hat{\ddot{r}}}</math><br><math>\mathbf{\hat{r'}},\mathbf{\hat{\dot{r'}}},\mathbf{\hat{\ddot{r'}}}</math><br><math>\mathbf{\hat{x}}, \mathbf{\hat{v}}, \mathbf{\hat{a}}</math><br>or<br><math>1</math> |
|} | |} | ||
+ | </div> | ||
===Constants=== | ===Constants=== | ||
Line 29: | Line 31: | ||
* <math>\alpha</math> = Fine Structure Constant | * <math>\alpha</math> = Fine Structure Constant | ||
* <math>c</math> = Speed of Light | * <math>c</math> = Speed of Light | ||
+ | |||
+ | ===Coefficients=== | ||
===Quantities=== | ===Quantities=== | ||
Line 37: | Line 41: | ||
* <math>m</math> = mass | * <math>m</math> = mass | ||
* <math>\rho</math> = volume mass density | * <math>\rho</math> = volume mass density | ||
+ | |||
+ | ===Proximities=== | ||
===Dislocations=== | ===Dislocations=== | ||
Line 45: | Line 51: | ||
* <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | * <math>\frac{d\mathbf{r'}}{dt}</math> = velocity a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | ||
* <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | * <math>\frac{d^2\mathbf{r'}}{dt^2}</math> = acceleration a charge <math>q'</math> was at the retarded time <math>t' = t - |\mathbf{r}-\mathbf{r'}|/c</math>, when it emitted a light signal which has now reached <math>q</math> at position <math>\mathbf{r}</math> and time <math>t</math> | ||
+ | |||
+ | ===Directions=== | ||
==Functions Composed of Physical Expressions== | ==Functions Composed of Physical Expressions== |
Revision as of 17:21, 23 April 2016
Contents
[hide]The Anatomy of a Physical Expression
Constant | Coefficient | Quantity | Proximity | Dislocation | Direction | |||||
---|---|---|---|---|---|---|---|---|---|---|
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Examples: or |
Constants
- = Magnetic Permeability of Free Space
- = Electric Permittivity of Free Space
- = Boltzmann's constant
- = Fine Structure Constant
- = Speed of Light
Coefficients
Quantities
- = point charge
- = linear charge density (for continuous charge)
- = surface charge density (for continuous charge)
- = volume charge density (for continuous charge)
- = mass
- = volume mass density
Proximities
Dislocations
- = position of a charge at time , when it receives a light signal from that was emitted earlier at time
- = velocity of a charge at time , when it receives a light signal from that was emitted earlier at time
- = acceleration of a charge at time , when it receives a light signal from that was emitted earlier at time
- = position a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
- = velocity a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
- = acceleration a charge was at the retarded time , when it emitted a light signal which has now reached at position and time
Directions
Functions Composed of Physical Expressions
Functions for a point charge
The electric scalar potential
at due to a point charge at is:
The magnetic vector potential
at due to a point charge which had a velocity at is: