|
|
(40 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | <center>Choose an '''independent variable''' jumping to a '''row'''!
| + | {{#seo: |
| + | |title=Function Conjunction @ Sho Drives Wiki |
| + | |titlemode=replace |
| + | |keywords=electricity,magnetism,motor,generator |
| + | |description=To facilitate understanding of the S.H.O. Drive, this place catalogs the ideas, creations, and techniques underlying its invention. |
| + | }} |
| | | |
− | Choose a '''function''' by clicking the '''cell (or conjunction)'''!
| + | To facilitate understanding of the S.H.O. Drive, this '''Function Conjunction''' will catalog the ideas, creations, and techniques underlying its invention. |
| | | |
− | <div style="direction: rtl; overflow-y: auto; height: 300px; width: 1200px">
| + | '''[[Magnetic Energy]]''' |
− | {| class="wikitable" style="direction: ltr"
| + | |
− | |+
| + | : The Magnetic Energy is the energy existing in magnetic fields. |
− | |-
| + | |
− | ! scope="col" width="70" | <small>Jump to...</small>
| + | '''[[The Anatomy of a Physical Expression]]''' |
− | ! scope="col" width="35" | [[#a|a]]
| + | |
− | ! scope="col" width="35" | [[#b|b]]
| + | : A physical expression is a product of factors, each with their own distinct role in defining a property of a physical system. Types include constants, coefficients, quantities, proximities, dislocations, and directions. |
− | ! scope="col" width="35" | [[#c|c]]
| + | |
− | ! scope="col" width="35" | [[#d|d]]
| + | '''[[Functions composed of Physical Expressions]]''' |
− | ! scope="col" width="35" | [[#e|e]]
| + | |
− | ! scope="col" width="35" | [[#f|f]]
| + | : A function composed of physical expressions is simply the result of the summations, differences, exponentiations, logarithms, or distributed multiplications or divisions of these physical expressions, or in the simplest case, a function is simply equal to an expression, such as <math>E(m) = mc^2</math>, where <math>E</math> is a function of <math>m</math>. |
− | ! scope="col" width="35" | [[#g|g]]
| + | |
− | ! scope="col" width="35" | [[#h|h]]
| + | '''[[Electromagnetic Potentials]]''' |
− | ! scope="col" width="35" | [[#i|i]]
| + | |
− | ! scope="col" width="35" | [[#j|j]]
| + | : The basic idea here is that the electromagnetic potentials <math>\phi</math> and <math>A</math> and their derivatives can be used to derive all electromagnetism. |
− | ! scope="col" width="35" | [[#k|k]]
| + | |
− | ! scope="col" width="35" | [[#l|l]]
| + | {{Site map}} |
− | ! scope="col" width="35" | [[#m|m]]
| + | |
− | ! scope="col" width="35" | [[#n|n]]
| + | [[Category:Function Conjunction| ]] |
− | ! scope="col" width="35" | [[#o|o]]
| + | |
− | ! scope="col" width="35" | [[#p|p]]
| + | |
− | ! scope="col" width="35" | [[#q|q]]
| + | |
− | ! scope="col" width="35" | [[#r|r]]
| + | |
− | ! scope="col" width="35" | [[#s|s]]
| + | |
− | ! scope="col" width="35" | [[#t|t]]
| + | |
− | ! scope="col" width="35" | [[#u|u]]
| + | |
− | ! scope="col" width="35" | [[#v|v]]
| + | |
− | ! scope="col" width="35" | [[#w|w]]
| + | |
− | ! scope="col" width="35" | [[#x|x]]
| + | |
− | ! scope="col" width="35" | [[#y|y]]
| + | |
− | ! scope="col" width="35" | [[#z|z]]
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="a"></div>aα
| + | |
− | || ||B(a)||C(a)|| || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="b"></div>bβ
| + | |
− | ||A(b)|| ||C(b)|| || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="c"></div>cχ
| + | |
− | ||A(c)||B(c)|| || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="d"></div>dδ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="e"></div>eεη
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="f"></div>f
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="g"></div>gγ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="h"></div>h
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="i"></div>iι
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="j"></div>j
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="k"></div>kκ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="l"></div>lλ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="m"></div>mμ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="n"></div>nμ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="o"></div>oοω
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="p"></div>pπφψ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="q"></div>q
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="r"></div>rρ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="s"></div>sσς
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="t"></div>tθτ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="u"></div>uυ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="v"></div>v
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="w"></div>w
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="x"></div>xξ
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="y"></div>y
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |-
| + | |
− | ! scope="row" height="30" | <div id="z"></div>z
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || || || ||
| + | |
− | || || || || ||
| + | |
− | |}
| + | |
− | </div>
| + | |
− | <div style="direction: rtl; overflow-y: scroll; width: 1200px">
| + | |
− | {| class="wikitable" style="direction: ltr"
| + | |
− | |+
| + | |
− | |-
| + | |
− | ! scope="col" width="70" | <small>Function</small>
| + | |
− | ! scope="col" width="35" | A(?)
| + | |
− | ! scope="col" width="35" | B(?)
| + | |
− | ! scope="col" width="35" | C(?)
| + | |
− | ! scope="col" width="35" | D(?)
| + | |
− | ! scope="col" width="35" | E(?)
| + | |
− | ! scope="col" width="35" | F(?)
| + | |
− | ! scope="col" width="35" | G(?)
| + | |
− | ! scope="col" width="35" | H(?)
| + | |
− | ! scope="col" width="35" | I(?)
| + | |
− | ! scope="col" width="35" | J(?)
| + | |
− | ! scope="col" width="35" | K(?)
| + | |
− | ! scope="col" width="35" | L(?)
| + | |
− | ! scope="col" width="35" | M(?)
| + | |
− | ! scope="col" width="35" | N(?)
| + | |
− | ! scope="col" width="35" | O(?)
| + | |
− | ! scope="col" width="35" | P(?)
| + | |
− | ! scope="col" width="35" | Q(?)
| + | |
− | ! scope="col" width="35" | R(?)
| + | |
− | ! scope="col" width="35" | S(?)
| + | |
− | ! scope="col" width="35" | T(?)
| + | |
− | ! scope="col" width="35" | U(?)
| + | |
− | ! scope="col" width="35" | V(?)
| + | |
− | ! scope="col" width="35" | W(?)
| + | |
− | ! scope="col" width="35" | X(?)
| + | |
− | ! scope="col" width="35" | Y(?)
| + | |
− | ! scope="col" width="35" | Z(?)
| + | |
− | |}
| + | |
− | </div>
| + | |
− | </center>
| + | |